Lecture 12
 14.2/14.3 Continuity, partial derivatives

Jeremiah Southwick

February 18, 2019

Things to note

Collect Homework 04 (Questions?).

Last class

Theorem

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

$f(x, y)$ approaches the height L no matter what path approaching (a, b) in the domain is chosen.

Evaluating limits

Example

Determine if the following limit exists.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}
$$

Evaluating limits

Example

Determine if the following limit exists.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}
$$

$$
\begin{gathered}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right) \\
=\lim _{(x, y) \rightarrow(0,0)} \frac{x(x-y)(\sqrt{x}+\sqrt{y})}{x-y} \\
=\lim _{(x, y) \rightarrow(0,0)} x(\sqrt{x}+\sqrt{y})=0
\end{gathered}
$$

Properties of limits (page 803)

Theorem

Let L, M, and k be real numbers. Let

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L \text { and } \lim _{(x, y) \rightarrow(a, b)} g(x, y)=M
$$

Then the following hold.
1,2. $\lim _{(x, y) \rightarrow(a, b)}(f(x, y) \pm g(x, y))=L \pm M$
3. $\lim _{(x, y) \rightarrow(a, b)} k(f(x, y))=k L$
4. $\lim _{(x, y) \rightarrow(a, b)} f(x, y) \cdot g(x, y)=L \cdot M$
5. $\lim _{(x, y) \rightarrow(a, b)} f(x, y) / g(x, y)=L / M$ if $M \neq 0$
6. $\lim _{(x, y) \rightarrow(a, b)}[f(x, y)]^{n}=L^{n}$ if $n \in \mathbb{R}^{+}$

Continuity

The same definition of continuity holds for multivariable functions as for single-variable functions.

Continuity

The same definition of continuity holds for multivariable functions as for single-variable functions.

Definition
$f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

Continuity

The same definition of continuity holds for multivariable functions as for single-variable functions.
Definition
$f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.
$f(x, y)$ is continuous on a set D if it is continuous at every point in D.

Continuity

The same definition of continuity holds for multivariable functions as for single-variable functions.
Definition $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$. $f(x, y)$ is continuous on a set D if it is continuous at every point in D.
Continuity works exactly the same way it works for single-variable functions: If two functions are continuous, then their composition is continuous.

Continuity

The same definition of continuity holds for multivariable functions as for single-variable functions.
Definition
$f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.
$f(x, y)$ is continuous on a set D if it is continuous at every point in D.

Continuity works exactly the same way it works for single-variable functions: If two functions are continuous, then their composition is continuous.

Example

Functions like $e^{x+y}, \cos \left(\frac{x y}{x^{2}+1}\right), \ln \left(1+x^{2} y^{2}\right)$ are continuous on their domains, since they are compositions of continuous functions.

14.3 Partial Derivatives

14.3 Partial Derivatives

We can't take 'full' derivatives of multivariable functions.

14.3 Partial Derivatives

We can't take 'full' derivatives of multivariable functions.
Question
How do we find the slope of a function $z=f(x, y)$ in the x-direction?

Partial derivatives

Question
How do we find the slope of a function $z=f(x, y)$ in the x-direction?

Partial derivatives

Question
How do we find the slope of a function $z=f(x, y)$ in the x-direction?

Partial derivatives

Question

How do we find the slope of a function $z=f(x, y)$ in the x-direction?

We can answer this question by thinking of $y=b$ as a constant, since we are only concerned with change in the x-direction.

Partial derivatives

If $y=b$ is a constant, then we are working in the plane $y=b$.

Partial derivatives

If $y=b$ is a constant, then we are working in the plane $y=b$.

Partial derivatives

In the plane $y=b$, our function becomes $z=f(x, b)$, or just $z=f(x)$, a single variable function.

Partial derivatives

This reduces the picture to something we're familiar with from Calculus 1.

Partial derivatives

We can add in the tangent line by taking normal derivatives.

Partial derivatives

This process gives us an answer to our question:
Answer
We find the slope of a function $z=f(x, y)$ in the x-direction by treating y as a constant and differentiating with respect to x. The resulting function is a function that keeps track of the slope of $f(x, y)$ in the x-direction.

Partial derivatives

We can do the same thing in the y-direction.

Formal definitions

The formal definitions for these derivatives look exactly like the definition we had in Calculus 1.

Formal definitions

The formal definitions for these derivatives look exactly like the definition we had in Calculus 1.

Definition

The partial derivative of $f(x, y)$ with respect to x is

$$
f_{x}(x, y)=\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

The partial derivative with respect to y is

$$
f_{y}(x, y)=\frac{\partial f}{\partial y}=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

Formal definitions

The formal definitions for these derivatives look exactly like the definition we had in Calculus 1.

Definition

The partial derivative of $f(x, y)$ with respect to x is

$$
f_{x}(x, y)=\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

The partial derivative with respect to y is

$$
f_{y}(x, y)=\frac{\partial f}{\partial y}=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

However, in practice we will not use the definition and instead will use the various rules we learned in Calculus 1.

Example

Example

Let $f(x, y)=x^{2}+3 x y+y-1$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $(4,-5)$.

Example

Example
Let $f(x, y)=x^{2}+3 x y+y-1$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $(4,-5)$.
Treating y as a constant, we calculate $f_{x}(x, y)=\frac{\partial f}{\partial x}=2 x+3 y+0$ (note that $\frac{\partial}{\partial x}[3 x y]=3 y$ because the function is x times a constant rather than two functions of x multiplied together).

Similarly, we treat x as a constant to find $f_{y}(x, y)=\frac{\partial f}{\partial y}=0+3 x+1$.

Evaluating these functions at $(4,-5)$, we find $f_{x}(4,-5)=2(4)+3(-5)=-7$ and $f_{y}(4,-5)=3(4)+1=13$.
This means geometrically that the function is dropping at a slope of -7 in the x-direction and rising at a slope of 13 in the y-direction at the point $(4,-5)$.

Example picture

We get the following picture.

Example

Example

Let $f(x, y)=y \sin (x y)$. Find $f_{x}(x, y)$ and $f_{y}(x, y)$.

Example

Example

Let $f(x, y)=y \sin (x y)$. Find $f_{x}(x, y)$ and $f_{y}(x, y)$.
$f_{x}(x, y)=y \cos (x y)(y)=y^{2} \cos (x y)$.
$f_{y}(x, y)=(1) \sin (x y)+(y)(\cos (x y) * x)=\sin (x y)+x y \cos (x y)$.

Example

Example

Let $f(x, y)=y \sin (x y)$. Find $f_{x}(x, y)$ and $f_{y}(x, y)$.
$f_{x}(x, y)=y \cos (x y)(y)=y^{2} \cos (x y)$.
$f_{y}(x, y)=(1) \sin (x y)+(y)(\cos (x y) * x)=\sin (x y)+x y \cos (x y)$.
If f_{x} and f_{y} exist and are continuous, then we say $f(x, y)$ is differentiable.

Example

Example

Let $f(x, y)=y \sin (x y)$. Find $f_{x}(x, y)$ and $f_{y}(x, y)$.
$f_{x}(x, y)=y \cos (x y)(y)=y^{2} \cos (x y)$.
$f_{y}(x, y)=(1) \sin (x y)+(y)(\cos (x y) * x)=\sin (x y)+x y \cos (x y)$.
If f_{x} and f_{y} exist and are continuous, then we say $f(x, y)$ is differentiable.

Definition
We say $f(x, y)$ is differentiable at a point $\left(x_{0}, y_{0}\right)$ in its domain if f_{x} and f_{y} are continuous near $\left(x_{0}, y_{0}\right)$.

Second-order partial derivatives

We can partially differentiate a function more than once, and in multiple orders. There are four second-order partial derivatives.

$$
\begin{aligned}
\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial x}\right] & =\frac{\partial^{2} f}{\partial x^{2}}=f_{x x} \\
\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial y}\right] & =\frac{\partial^{2} f}{\partial y^{2}}=f_{y y} \\
\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial x}\right] & =\frac{\partial^{2} f}{\partial y \partial x}=f_{x y} \\
\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial y}\right] & =\frac{\partial^{2} f}{\partial x \partial y}=f_{y x}
\end{aligned}
$$

Example

Example

Let $f(x, y)=x \cos (y)+y e^{x}$. Find all 2nd-order partial derivatives.

Example

Example

Let $f(x, y)=x \cos (y)+y e^{x}$. Find all 2nd-order partial derivatives.
$f_{x}=\cos (y)+y e^{x}$
$f_{y}=x(-\sin (y))+e^{x}$
$f_{x x}=0+y e^{x}$
$f_{y y}=x(-\cos (y))$
$f_{y x}=(-\sin (y))+e^{x}$
$f_{x y}=-\sin (y)+e^{x}$
Notice that $f_{y x}=f_{x y}$. This will be the case whenever $f(x, y)$ satisfies relatively lax criteria.

Mixed partials theorem

Theorem
If $f(x, y)$ and its partial derivatives $f_{x}, f_{y}, f_{x y}, f_{y x}$ are defined near (a, b), then

$$
f_{y x}(a, b)=f_{x y}(a, b)
$$

This is known as Clairaut's Theorem.
In particular, if the conditions in the theorem hold for all the pairs (a, b) in the domain of the functions involved, then the functions will have the same formula on that domain, and we only need to find one of $f_{x y}$ or $f_{y x}$ to know the other.

